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Abstract:

For flow rates of technological interest, most gas-liquid flows in pipes are in the annular flow

regime, in which, the liquid moves along the pipe wall in a thin, wavy f'dm and the gas flows in the
core region. The waves appearing on the liquid film have a profound influence on the transfer
rates, and hence on the design of these systems. We have recently proposed and analyzed two
boundary layer models that describe the characteristics of laminar wavy films at high Reynolds
numbers (300-1200). Comparison of model predictions to 1-g experimental data showed good

agreement. The goal of our present work is to understand through a combined program of
experimental and modeling studies the characteristics of wavy films in annular two-ph .ase gas-
liquid flows under normal as well as microgravity conditions in the developed and entry regions.
1. Introduction

It is well known that for conditions of technological interest, there are three major types of

flow regimes observed for gas-liquid flows in pipes at microgravity. At low gas flow rates, a
'bubbly flow' pattern, in which, small gas bubbles are uniformly distributed in the liquid, is
obtained. Increasing the gas flow rate leads to 'slug flow'. This flow pattern is characterized by

large bullet shaped gas bubbles separated by liquid slugs. Increasing the gas flow rate further leads
to the 'annular flow' regime in which, the liquid moves along the pipe wall in a thin, wavy film

and the gas flows in the core region. A large fraction of gas-liquid flows of practical interest under
normal as well as microgravity conditions fall in the annular flow regime.

Experiments have shown that in the annular flow regime, the waves appearing on the liquid
film have a profound influence on the transfer of heat, mass and momentum in these systems.
Neglecting the wavy nature of the film can seriouly underestimate the transfer rates. For example,
the heat and mass transfer rates into the liquid may be enhanced by 100 to 300% in the presence of

the waves as compared to the flat film case.
Our recent work focussed on the simplest form of the annular flow regime in which the

liquid film falls under gravity through either a stagnant or an upward moving gas stream (causing
interfacial shear). Fig.1 shows the experimentally measured film thickness profile for a freely

falling film at a liquid flow rate of practical interest.
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Fig. 1: Schematic of a free falling film and experimentally measured film prof'de at Re = 600
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The liquid film surface consists of a series of large waves accompaned by an array of
wavelets of smaller amplitude and length which exist between these large waves. The large waves
are steeper in the front and slope more gradually in the back with slopes not exceeding ten degrees.
The amplitude of these large waves can be two to three times the mean film thickness and they
carry a large fraction of the total mass flow. As shown above, the wave amplitude and spacing
display a chaotic behavior similar to that observed in many lower dimensional deterministic
models. It is speculated that the large waves contain stagnation points and recirculating regions
which enhance the transport rates.

A major goal of our work is to develop predictive models for wavy films occurring in gas-
liquid annular two-phase flows (as well as other applications) at normal and microgravity
conditions and validate them with experimental data. We summarize here our recent results and
outline the work in progress.

2. Boundary Layer Models for Wavy Films:

We have formulated two boundary layer models that are suitable for the d_cription of
laminar wavy films under normal gravity conditions [1]. The fh'st model is the Kapitza s boundary
layer model [2], which, for a two-dimensional f'dm is given by the equations

-- p_X + g +v_2 ;-°* <x <**,O < y <h, t >0 (1)

_--_+ _-_ = 0 (3)

u=v=0 @ y=0 (4)

=0; v=ht+uhx ;p-po=-t_hxx @ y=h (5)

This model is based on the assumptions that the pressure in the film is independent of y, the
tangential stress condition is the same as that for the Nusselt film and the normal stress condition

includes only surface tension effect. This model is analyzed in some detail and it is shown that it is
adequate for describing the statistics of large amplitude waves at high Reynolds numbers (in the
range 300-1200). However, it is found that the model has one serious deficiency, i.e. it predicts
negative wall shear stress at the front of a large wave on a free falling f'flm. In addition, it cannot

predict large waves with peak to substrate ratio exceeding 3 (observed in experiments).

We extended the Kapitza's model to include pressure variations across the film as well as

higher order viscous terms in the x-momentum equation and tangential and normal stress boundary
conditions. This new second order boundary layer model for a free falling f'tlm is described by the
equations

/)u 3u _u 1 _ (O2u _2u

_" + u _-_"+ v _'_ = - p_X + g + v _-'f + _x--_J; -** < x <"_, 0 < y < h, t > 0 (6)

_uy= P hxx u2 (7)
Ov

+ = o (8)
v = h t + u h x at y = h(x,t) (9)

OU t)V !. 2t)U . _ OV

_'_ + _'_ - _-_= at y,,x _-_ * "+ hx 0 = h(x,t) (10)

P" Po" 2B - hx _ + a hxx = 0 at y = h(x,t) (11)

u=v=O at y=O (12)
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It should be noted that this model is much easier to solve than the full two-dimensional Navier-

Stokes equations because of the highly simplified y-momentum balance equation. To assess the
accuracy of the models, we compared the linear stability results for the three models, i.e. the
boundary layer model (hereafter referred to as BL model ), the second order boundary layer model
(SBL model ) and the complete set of two-dimensional Navier-Stokes equations.

We note that the Nusselt solution

P" Po = 0; v o = 0; h o = 1; Uo(Y) = 3 ( 2y - y2 ), 0 < y < 1

satisfies all three models (after transforming to dimensionless form using the Nusselt velocity u N

and film thickness h N to scale the variables ). Linearization of the model equations around this

solution and simplification gives the Orr-Sommerfeld equation [31.

iaRe iaRe ,,
F"" - 2 a2F ' + a4F - --4- (Uo" Ce)(F" - a2F) + -T- Uo F = 0 (13)

3 (z2 F(I) 3F(O) = O; F'(O) = O; F(1) = Ce - ] ; F"(1) + =

ia3ReWe iaRe 3F"'(1) 3a2F'(1) - 4" +--4- F'(1)(Ce- ) = 0, (13a)

where

a = n hN Ce = Ce r + iCe i Ce = V__ (13b)
' , UN '

and V w is the (dimensional) velocity of waves of infinitesimal amplitude. The function F(y)

represents the perturbation of the dimensionless streamfunction, We and Re are the Weber and
Reynolds numbers def'med by

We - a - 31/345/3 Ka Re "5/3 ; Re 4F 4UNhN

pUN2hN V V

uN = ghN2 (Nusselt average velocity)" Ka - pgl/3v4/33v

(The Kapitza number, Ka, has a value of 3371 for pure water at 25°C). The corresponding

eigenvalue problem for the boundary layer model may be shown to be

iotRe iaRe ioc3ReWe
F" 4 (u o - Ce) F' + --4- u'oF - 4 - 0 (14a)

F(0) = 0 ; F'(0) = 0 ; F(1) = Ce - _ ; F"(1) = 3, (14b)

while the second order boundary layer model gives

iaRe • 3
F"'- a2F '- -4- [(uo-Ce)F"uo'F]'k_ [l'2+We'0"45yS+2"25y4 - 3y3]-2a 2 F'(1)= 0 (15a)

F(0) = 0 ; F'(0) = 0; F(1) = Ce - _ ; F"(1) + a 2 F(1) = 3. (15b)

We compare in Fig. 2a the linear growth rate curves of the two boundary layer models with that of
the Navier-Stokes equations (Orr-Sommerfeld analysis) for Re = 600 and Ka = 3371 (water). As

can be expected intuitively, the curves nearly coincide for small wave numbers ( 0 < a < 0.4 ) but

the boundary layer model deviates significantly from other two for a values exceeding 0.5. Fig. 2b

compares the critical wave numbers ( on the neutral stability curves ) for Reynolds numbers in the
range zero to 1200 and Ka = 3371. From these comparisons, it may be concluded that the second
order boundary layer model which includes pressure variations across the film and higher order

viscous effects approximates the linear growth rate characteristics much better than the standard
boundary layer model in the entire range of the wave numbers.
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Fig. 2: Comparison of the linear growth rate and the neutral stability curves of the boundary layer
models to the full Orr-Sommeffeld equation (Ka = 3371).

3. Numerical Solution Method and Comparison with Experimental Data:

In order to solve the boundary layer models, we developed a numerical scheme based on
the boundary collocation method. We expand the streamfunction in the normal coordinate y,

n

W(x,y,0 = a0(x,t) + al(x,0y +Zai(x,t)bi(y) (16)
i=2

where y is measured from the wall, x is the streamwise coordinate and t is time. The coefficients in
the series, ai(x,t), are determined from both boundary and integral conditions as described
elsewhere [3,4].

The polynomial expansion for _F(x,y,0 is truncated at six terms to insure resolution of

effects due to steep gradients, inertial forces, etc. The novel form of polynomial functions

(2i-3)yi+l'_.
bi(Y ) = (yi - (2i-l)h)' i = 2, 3, 4, 5 (17)

is used. Here, b2(Y ) corresponds to parabolic fiat film solution while b 3, b 4 and b 5 account for
_u

deviation from parabolic profile and non-zero values for _-_ at the interface and the normal stress

at the free surface. Determination of the coefficients ai(x,t) follows from substituting the assumed

form of the streamfunction into various boundary and integral conditions. This procedure reduces
(discretizes) the model equations into a set of coupled equations in x and t. These discretized

evolution equations describe the film profile from wave inception to an asymptotic state, but their
solution requires heavy computational efforts, because they are a set of highly nonlinear partial

differential equations (of parabolic type) in t and x (-_ < x < _). Results analogous to the linear
stability are not available to describe the asymptotic form of the fully developed state. A systematic
study of the fully developed steady film can be performed by transforming the equations to a
traveling wave coordinate and reducing them to a finite dimensional set of ODEs whose behavior is
parameterized by the wave celerity Ce. The computational procedure now requires only an initial
condition (a perturbation upon a flat film) and yields the asymptotic behavior of the traveling
waves.

A traveling coordinate system moving at a steady, nondimensional wave celerity Ce with
respect to a stationary reference frame is defined by

z = x - Ce t (18)

where z, x and t are physical coordinates normalized by hN and hN/U N, respectively. We use this

transformation and assume that motion with respect to the z coordinate is steady to reduce the
partial differential equations into a set of six nonlinear ordinary differential equations.

We now present results of our simulations for the second order model and compare them
with experimental data. We show in Fig.3 the computed film profiles at Ce = 1•7457 (below this
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Ce value, no bounded solutions exist). Large waves with ripples in the front are interspersed

between a random array of smaller waves. The streamlines for two large waves having peak to
substrate ratio of 2.8 and 3.6, respectively are shown in Fig. 4. These streamlines clearly show the
region of recirculation and how it increases with increasing peak to substrate ratio. This
recirculation explains the experimentally observed heat and mass transfer enhancement in the

presence of large waves. A comparison of the numerical results for the two models shows that
both models predict the same qualitative behavior, but the second order model gives larger
peak/substrate ratio and overcomes the main deficiency of the boundary layer model, i.e,:negative
wall shear stress at the front of large waves. We have calculated the flow fields in the nun using

the second order model and found that both and _ are not zero at the front of the large waves.
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Fig. 3: Computed trim profile for the second order boundary layer model and Re = 600,
Ce = 1.7357 and Ka = 3371.

(a) Co)

Fig.4: Computed streamlines under the large waves (in moving coordinate system) for peak
thickness to substrate thickness ratio of 2.8 (a) and 3.6 (b).

We have compared the noise insensitive statistical properties of experimentally measured
stationary wavy film profiles with the numerical results generated by integrating the model
equations. The simulated waveforms are those obtained for the second order boundary layer model
for a limiting wave celerity below which no bounded wave profiles exist. It was found that these
chaotic waveforms have a structure similar to the naturally occurring (experimentally measured)

traveling waves. Using the model equations, we have computed the wave celerity at inception
(Hopf bifurcation), the celerity below which no bounded solutions exist, the rms film thickness,

probability density function, power spectral density function and the mean and rms wave
amplitudes using standard techniques. Fig. 5 shows good agreement between the computed and
experimental values for celerity and rms film thickness. Similar agreement was also found for
otherstatistical measures now shown here. The model equations show strong evidence that the

wavy film is an example of a deterministic system displaying lower dimensional chaos.
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Fig. 5: Comparisons of computed wave statistics of chaotic film proFdes (Ka=3371) with
measured waveforms(Ka=3350). (a) Wave Celerity; (b) Wave rms f'dm thickness.

4. Conclusions:

The second order boundary layer model presented here is the only model presently

available in the literature to predict the behavior of wavy f'flms at high Reynolds numbers. The
initial results on the comparison of the model predictions to experimental data are very
encouraging. However, the model needs further testing and refinement.

The major goals of our current work are (i) extension of the boundary layer models to
predict the wavy f'tlm behavior in the presence of gas flow under normal and microgravity

conditions (ii) experimental and modeling studies on two-phase developing flows to determine the
evolution of the wavy structure on the gas-liquid interface and the length of the entry region of
annular flows (iii) measurement and analysis of experimental data on pressure drop in fully
developed two-phase annular flows in microgravity and (iv) to study the transition between annular
and slug flow regimes, especially in microgravity.
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